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Abstract. Problems concerning laminar-turbulent transition are addressed by solv- 
ing a series of initial value problems. Solutions to the temporal, initial-value problem 
.with an inhomogeneous forcing term imposed upon the flow are sought. It is shown 
that: (1) A transient disturbance lying located outside of the boundary layer can 
lead to the growth of an unstable Tollmein-Schlicting wave; (2) A resonance with 
the continuous spectrum may provide a mechanism for bypass transition; and (3) 
The continuum modes of a disturbance feed directly into the Tollmein-Schlicting 
wave downstream through non-parallel effects. 

1 Introduction and Results 

In previous work [2],[5], the authors have shown a strong correlation to the 
solution of a temporal, three-dimensional, initial-value problem and the di- 
rect numerical simulation of the spatial problem. The methodology consisted 
of solving the linear disturbance equations subject to a series of initial values. 
These solutions are relatively easy, fast, and inexpensive to calculate. The cor- 
responding spatially evolving flow was then determined by direct numerical 
simulation using the full Navier-Stokes equations and the two solutions were 
compared. During the period of transient growth for both channel flow and 
the laminar boundary layer, the two approaches agree quite well. Thus, it is 
reasonable to use the inexpensive and fast solutions of the temporal, initial- 
value problem as a means to conduct numerical experiments that can lead 
to greater understanding of the mechanisms at  work. It is only natural that 
we extend our studies to investigate the effects that freestream disturbances 
have on the laminar boundary layer. 

Receptivity has traditionally been divided into the broad categories of 
forced receptivity or natural receptivity; however, based on the physical and 
mathematical descriptions, we use three categories: forced receptivity, natural 
receptivity, and naturally forced receptivity. Forced receptivity is character- 
ized by the experiments of Nishioka and Morkovin [6] where disturbances 
of limited spatial extent are introduced in the freestream downstream of the 
leading edge. The case of natural receptivity is characterized by the experi- 
ments of Boiko, i.e.,[l] where a disturbance field upstream of the leading edge 
of a smooth plate is generated. Naturally forced receptivity is characterized 
by the experiments of Dietz [3] where freestream disturbances are scattered 



by localized surface irregularities. If disturbances are kept at  a level in which 
linear theory applies, then forced receptivity problem is governed by a set of 
inhomogeneous linear partial differential equations in time and space, natu- 
ral receptivity by the homogeneous problem, and naturally forced receptivity 
is either governed by the inhomogeneous problem (if viewed as a perturba- 
tional problem) or by the homogeneous problem (if viewed as a changing 
mean flow). Downstream of the imposed disturbance, all three problems are 
the same mathematically as the natural receptivity problem. 

The procedure used here, integrating the linear disturbance equations of 
temporal stability theory as an initial value problem, is straightforward and 
simple. In every numerical calculation, the complete solution, namely, the 
continuum of eigenfunctions to the Orr-Sommerfeld problem and all discrete 
modes, is determined. Only afterwards is this solution interpreted in terms 
of the individual modes of the Orr-Sommerfeld equation. 

For the flat-plate boundary layer, the fluid is taken as one of constant 
density with the basic flow approximated as parallel with U = U(y),V = 
W = 0. The instantaneous flow is decomposed into a basic state, (U, V, W, P ) ,  
plus a time-dependent disturbance to this basic state, (u, v, w,p). The length 
scale chosen for non-dimensionalization is the displacement thickness, 6*,  of 
the Blasius boundary layer solution. and U(2.856) = .99 gives the outer edge 
of the boundary layer. 

By using the Fourier transformations defined with respect to x and by de- 
composing the forcing as F = curl f ree  F + divergence free F = (Ac, B,, Cc) 
+ (Ad, B,, C,), the time-dependent Orr-Sommerfeld equation governing two- 
dimensional disturbances, with A = D2 - a2, becomes 

This equation is solved numerically by the method of lines. All solutions 
of the forced problem are subject to an initial condition that produces the 
quantifiable, unstable Tollmien-Schlichting wave seen in Figure (1A) labeled 
by Bo = 0. The forcing is is chosen to be identically zero at  t = 0 and to 
increases smoothly as a function of time. Receptivity is measured by the gain 
in the amplitude to the unstable Tollmien-Schlichting wave due to forcing 
terms. 

A general purpose forcing function, localized about y = yo, is 

The time histories of the perturbation energy using the parameters values 
Bo = 1000, R = 1000, a = 7 = .25, 4 = 0, = .5, yo = 6 and r ( t )  = 
1 -e-t2/a: with ut = 100, are shown in Figure (1). The forcing frequencies are 
wf = 0.05 and wf = 0.25 (for comparison, the Tollmien-Schlichting frequency 
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Fig. 1. A. Response to slowly ramped single frequency forcing. Forcing stopped 
at t = 1000 (dashed line). B. Receptivity factor for forced modes (diamonds) and 
naturally-forced modes (squares) 

is .0874). The energy approaches a constant for wf # a. This behaviour 
mimics the particular solution when the governing equations are forced at  
a single real frequency. The energy remains constant until the energy of the 
forced solution and the energy of the unstable Tollmien-Schlichting wave 
introduced by the initial conditions are of equal value. The curve with wf = a 
does not level off to a finite value on this time scale and shows much greater 
initial growth as compared with wf # a. This demonstrates that there is 
a resonance with the continuum. The dashed line in Figure (1A) shows the 
results of smoothly removing the forcing at  t = 1000. A significant Tollmien- 
Schlichting wave is not generated by forcing external to the boundary layer 
at  this resonant frequency even though the energy of the disturbance shows 
tremendous growth prior to removing the forcing. The effects of transient 
forcing are explored by calculating the response to the forcing with 

Figure (2B) shows the time histories of the perturbation energy for eighteen 
cases: t o  = 200, Bo = lo6, a = y = .25, q5 = 0, cg = .5, n? = 10, 25, 50, 
wf = 0.05, 0.25 and yo = 1.0, 3.0, 5.0. Of important note is the slow algebraic 
decay after cessation of the forcing when yo = 3 and 5. This is the hallmark 
of the response as predicted in Grosch and Salwen [7] for the continuum 
modes. When considereing the generation of the Tollmien-Schlichting waves, 
the dominant parameter is, clearly, the vertical position of the localized forc- 
ing function. This might even be unexpected since the Tollmien-Schlichting 
wave and its adjoint are proportional to exp (-?yo) at the point of forcing. 
This factor cannot account for the more than five orders of magnitude de- 



crease seen between groups of solutions as the parameter yo varies. In the 
previous calculations, the function B has been specified, thus, representing 
the case of naturally forced receptivity. In Figure (lB), the same function 
was used to specify A2B instead of B thus representing the case of forced 
receptivity. The differences in ATS as a function of yo is shown. As the dis- 
turbance location moves toward the freestream, the immediate generation 
of Tollmien-Schlichting waves have strengths proportional to e-TgO in the 
case of forced receptivity. The strength of immediate generation of Tollmien- 
Schlichting waves for the naturally forced receptivity drops off at  a much 
faster rate as the forcing location moves toward the freestream. 
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Fig. 2. A. Response to transient forcing. B. Response to initial conditions with 
Tollmien-Schlichting cancellation (dashed lines) and without canellation (solid 
lines). 

The development of the theory used here for non-parallel boundary layers 
is straightforward and relies on the assumption that the parallel theory is 
at  least locally applicable for each value of the Reynolds number, i e . ,  the 
same assumption used to derive the Orr-Sommerfeld equation and as a basis 
for analyzing the effects of non-parallelism on a single Tollmien-Schlichting 
wave. If the forcing term is written as 

 AB^ = f (y ,  t )e iwf t ,  (4) 

where the frequency wf is considered as the primary frequency of the forcing 
and the time dependence is such that f ( y ,  0) = 0 and f ( y ,  t )  = 0 for t > 



T, then the solution of (I), subject to zero initial conditions and Reynolds 
number R = R1, is 

for t > T. The finite set 4i(y), n = 1 , 2 .  . . N are the the discrete eigenfunc- 
tions to the Orr-Sommerfeld equation and are normalized to have unit energy. 
The set @(y,lc) is the continuum of eigenfunctions to the Orr-Sommerfeld 
equation, also normalized with respect to energy. 

Equation ( 5 )  represents the exact solution for a parallel flow subjected 
to forcing. However, the boundary layer thickens as time progresses, and 
for a more realistic solution the effects of this must somehow be included. 
This thickening of the boundary layer is of course a continual process, but 
insight can be gained by re-expanding the solution at  t = T in terms of the 
eigenfunctions for a larger Reynolds number. The eigenfunctions and adjoint 
eigenfunctions for R = R2 are generated by replacing U(y), U'(y), and U"(y) 
with 

U(-),  Y -Ut(-), 1 Y and -U"(-), 1 Y 
f i f i f i  xo f i  

respectively. The parameter xo is related to the new Reynolds number by 
fi = R2/R1. If &(y) and t+!Jk(Y) are the eigenfunctions at  the new down- 
stream position, then at  t = T, the solution can be expanded as 

with 

J U  

where !P; (y) is the adjoint eigenfunction of the downstream discrete mode. 
By taking the extreme example of ai = 0, ie., the forcing producing no 
Tollmien-Schlichting waves at  R = R1, the coefficient bi # 0 since !P;(y) is 
not orthogonal to $k(Y) and &(y) when j # i. This is a receptivity mech- 
anism due to non-parallelism alone since no further disturbance within or 
without the boundary layer is required to initiate the gain in amplitude of 
the Tollmien-Schlichting wave. 

These non-parallel effects are explored numerically through a series of 
initial value problems. The solution for initial values of the form (2) with 
yo = 3 and xo = 0.8 is calculated twice: once as is and once with an additional 
Tollmien-Schlichting wave added that is amplitude and phase matched to 
nearly cancel the instability. The results are seen in Figure (2B) where the 



divergence of the solutions clearly show that the value of aTS for the second 
case is near zero. The solution using the same two initial values are calculated 
with 20 = 1 and zo = 1.2. Surprisingly, it is seen that the majority of the 
Tollmien-Schlichting wave at  these higher values of 20 does not come from the 
Tollmien-Schlichting wave at  2 0  = 0.8 but rather from the part of the solution 
that produces no Tollmien-Schlichting wave at zo = 0.8. The results here are 
rather ominous. If there is any additional disturbance in the outer edges of 
the boundary layer or near freestream, these disturbances feed directly into 
the Tollmien-Schlichting wave and will produce a growth rate greater than 
(sometimes very much greater than) the predicted value, even when that 
predicted value accounts for all of the non-parallel effects associated with a 
single Tollmien-Schlichting wave. 

2 Conclusions 

It has been shown that the techniques previously developed by the authors 
to  investigate various aspects of the temporal stability problem can also be 
applied to investigate the problem of receptivity. A resonance with the contin- 
uum is discovered and must be considered when investigating bypass mecha- 
nisms. The form and vertical location of the forcing function is shown to have 
great significance when determining the strength of the generated Tollmien- 
Schlichting wave. Perhaps most importantly, when transferring the solution 
from one downstream location to another the continuum at the upstream po- 
sition feeds into the Tollmien-Schlichting at the downstream location. More 
details can be found in [4]. 
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